
Managing large
codebases in R

Presented by
Alex Bertram

Ryo Nakagawara

Presentation outline

● Intro
● Principles & Practice

○ Adopting a coding style for your team
○ Organizing code into functions
○ Organizing functions into packages
○ Documenting code
○ Using version control

2

Introduction

3

ActivityInfo & R

ActivityInfo is a user-friendly relational database for M&E,
Case Management, and Humanitarian Coordination that
seamlessly integrates with R.

https://www.activityinfo.org/signUp

4

https://www.activityinfo.org/signUp

What is a “large code base” ?

5

● More than one person working on the code
● More than a few files…

Examples - OCHA Libya

6

Examples - R4V

7

Examples - R4V Shiny App

8

Examples - Qualminer in Ecuador

9

Principles

10

What is a coding style?

● Rules that the whole team agrees on
● How to name functions, variables, datasets
● When to use spacing
● When and how to document functions

11

Adopting a common code style

Why is a common code style important?

● Code is written once, read a hundred times
● Is it …?

○ check_duplicates()
○ checkDuplicates()
○ check.duplicates()
○ CheckDuplicates()
○ ???

12

Adopting a common code style

How to get started

● Recommendation: http://adv-r.had.co.nz/Style.html

● Automated with formatR: https://yihui.org/formatr/

13

Adopting a common code style

http://adv-r.had.co.nz/Style.html
https://yihui.org/formatr/

What is a function?

14

Organizing code into functions

Input 1

Function

Input 2

Output

Pure vs Impure functions
Pure functions

● Same inputs, same outputs
● No side effects (no reading, writing)
● Can be tested

Examples:

● flag_duplicates(hh_list)
● score_eligibility(hh_list)

15

Impure (imperative) functions

● Outputs depend on the outside world
(reading from a file, from a server)

● Same inputs, (maybe) different outputs

Examples

● launch_missiles()
● read_hh_from_ai_form()
● write_updates_to_db(df)

Why functions?

● Breaking code into smaller functions makes the code easier to read and
understand

● Easier to compose functions together
● Individual (pure) functions can be tested

16

Organizing code into functions

Function length

● Strive for functions with max twenty lines.
● A function should “fit in your head”.

17

Organizing code into functions

18

Splitting pure and imperative parts

● The “Functional Core, Imperative Shell” Pattern

19

Organizing code into functions

upload_from_csv()

read_hh_from_csv() |>
 remove_duplicates() |>
 score_eligibility() |>
 import_hh_to_ai()

R Packages

● Combination of functions, dependencies, and documentation
● Standard structure

20

Organizing functions into packages

Why packages?

● Re-use common code
● Easier to work with many files than endlessly source()’ing.

21

Organizing functions into packages

Version control system

● Most commonly used VCS today is Git
● Free hosting at GitHub.com, GitLab.com, BitBucket.com
● Supports collaboration

22

Using version control

