Measuring Impact Quantitatively

May 10th, 2022

ActivityInfo

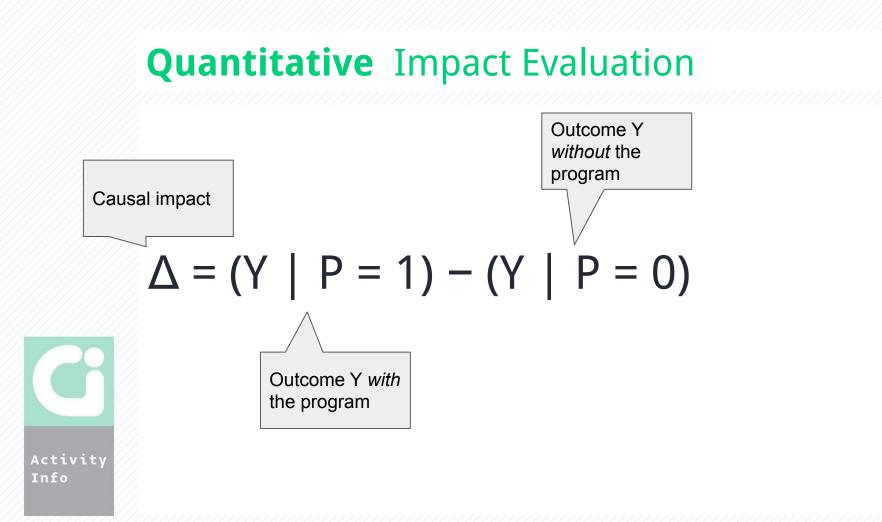
PART III

Presented by the ActivityInfo Team

Monitoring & Evaluation Software

- Track activities, outcomes
- Beneficiary management
- Surveys

Activity Info • Work offline / online



Outline

- 1. Quick review
- 2. Statistical significance
- 3. Effect size
- 4. Questions!

Quick review

Key points from Part I

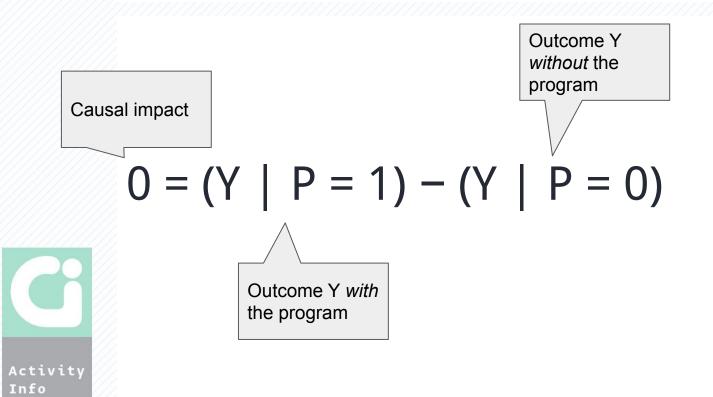
- Why conduct a quantitative impact evaluation?
- When would you not conduct a quantitative impact evaluation?
- Types of measurements
- Sources of measurement error
- Reliability: Cronbach's alpha
- Cognitive interviewing, a tool for improving questionnaires

Activity Info

Key point from Part II

Activity Info

- Fundamental problem of causal inference
- Identify four strategies for "counterfeit counterfactuals"
- Identify risks of before-and-after comparisons

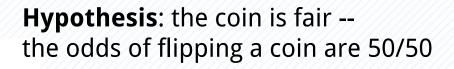

Statistical significance

Null hypothesis

The hypothesis that our program has had **ZERO** impact.

Null hypothesis

Significance testing


Can we <u>disprove</u> the null hypothesis?

Significance testing

IF the null hypothesis was true, what are the chances of sampling the data we sampled?

Experiment: 3 heads, 0 tails

What are the chances if the coin is fair?

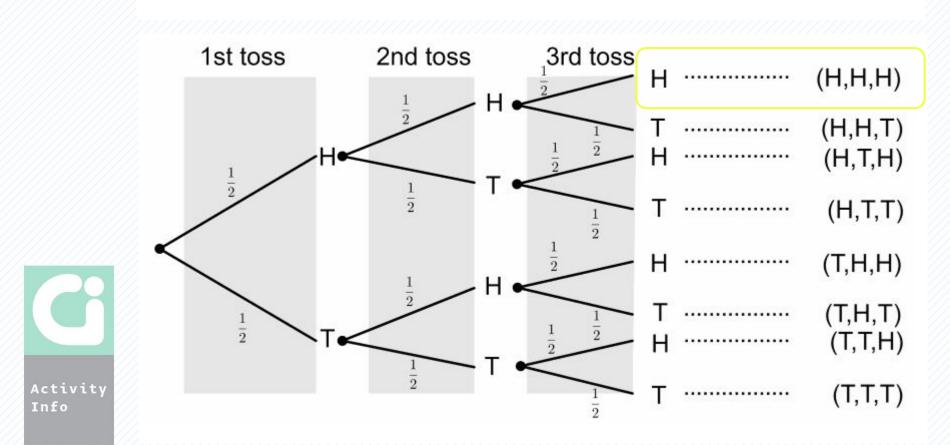


Image source: https://www.storyofmathematics.com/coin-flip-probability/

Hypothesis: the coin is fair -the odds of flipping a coin are 50/50

Activity Info Experiment: 3 heads, 0 tails

What are the chances if the coin is fair? 12.5%, *p* = 0.125

Can we reject the hypothesis?

No, this is not *so* unusual, even if the coin was fair.

Activity

Info

Hypothesis: the coin is fair -the odds of flipping a coin are 50/50

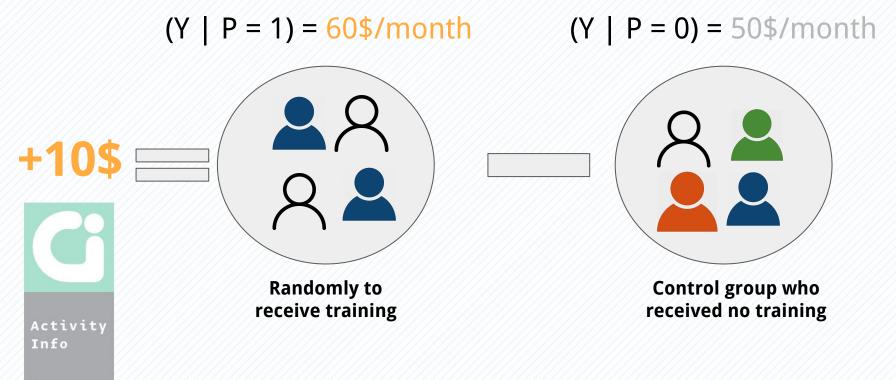
Experiment: 8 heads, 2 tails

What are the chances if the coin is fair? 4% probability, *p* = 0.04

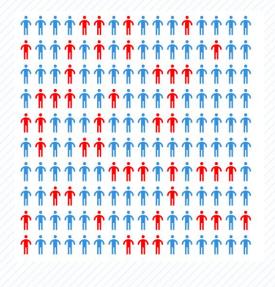
Can we reject the hypothesis?

Borderline. This is somewhat unusual, but it would still happen ~ 1 out of 20 times.

Hypothesis: the coin is fair -the odds of flipping a coin are 50/50


Experiment: 19 heads, 1 tails

What are the chances if the coin is fair? 0.001907% probability, *p* < 0.0001


Can we reject the hypothesis?

Yes! If the coin was fair the chances of this happening are freakishly low.

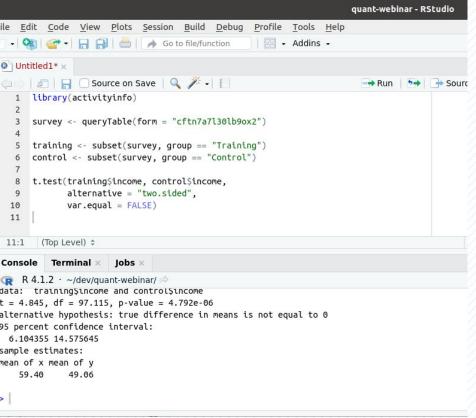
Hypothesis testing: impact

Hypothesis testing

(Null) Hypothesis: our training program has zero impact on incomes

Experiment: Sample 50 people from each group, difference is +10 USD.

What are the chances if our training program has no impact?


Activity Info Calculating probability of mean difference Student's t-test calculates the probability of getting this much difference in averages, if the null hypothesis were true.

Data collection > Analysis

INCOME SURVEY	CANCEL RECORD ENTRY		
FIELD 3 OF 3 Income over the	e last 30 REQUIRED	////	dit <u>C</u> ode <u>V</u> iew ३३ 🔐 - 🔒 🔓
days*		O Ur	titled1* x
How much did you earn	over the last 30 days?		
-		1	library(activi
18		2	ctor dry(dectre
		3	survey <- quer
		4	
		5	training <- su
		6	control <- sub
		7	
		8	t.test(trainin
		9	alterna
		10	var.equ
		11	1
		11:1	(Top Level) 💲
		Conse	ole Terminal ×
			R 4.1.2 · ~/dev/qu
			trainingŞincom
			.845, df = 97.11
			native hypothesi rcent confidence
			04355 14.575645
			e estimates:
			of x mean of y
			9.40 49.06
Previous	Submit record		

Activi Info

t-Tests with Excel

B	T-Test ☆ ⊡ File Edit View I		at Data Tools	Extensions	Help Last edit wa	as seconds ag	0	
I	o 🛥 🖶 🏲 🛛 100%	• \$ %	.0 .00 123 ~	Arial	- 10 - B	I S A	۵. 🖽	12 -
E3	✓ ∫X =T.TE	ST(C2:C51,C52	2:C101,2,3)					
	A	В	С	D	E	F	G	н
1	Name	Group	Income					
2	Dr. Lexie Boyle	Control	50					
3	Julia Jenkins	Control	53		0.0004792%			
4	Miss Sadye Moen	Control	54					
5	Bernard Blanda	Control	59					
6	Susanna Klein	Control	55					
7	Armand Stanton DVM	Control	45					

Activity Info

Hypothesis testing

********************** ****************** *** * * * * * * * * * * * *** * * * *************************************** *********************** **TTTTTTTTTT** *************** *************** **********************

Activity

Info

(Null) Hypothesis: our training program has zero impact on incomes

Experiment: Sample 50 people from each group, difference is +10 USD.

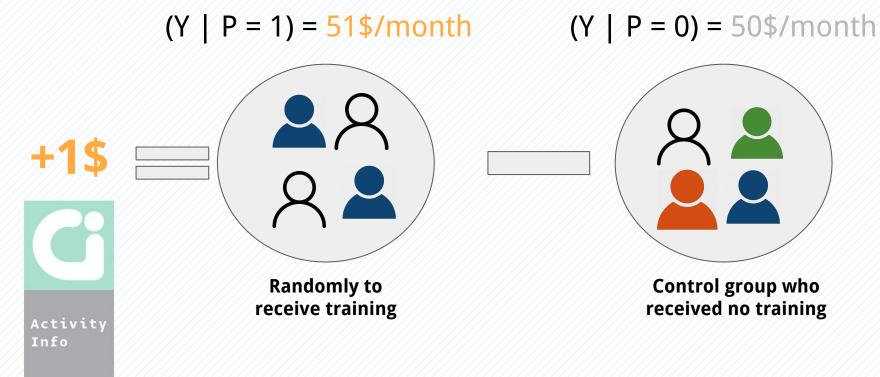
What are the chances if our training program has no impact? 0.0004792%

Can we reject the hypothesis?

Yes! If our program had no impact, there would be practically no way of getting these results by chance.

Hypothesis standards

- *p* < 0.05 * "statistically significant"
- *p* < 0.01 ****** "highly statistically significant"
- *p* < 0.001 ***



Hypothesis testing - pitfalls

"Not zero" is a very low standard is a very low standard for impact!

Hypothesis testing: small effects

Miniscule differences can still be "significant" with enough data!

Impact of program: +1 USD

Sample size 50, p = 0.519

Sample size 100, p = 0.236

Activity Info

Sample size 500, p = 0.014*

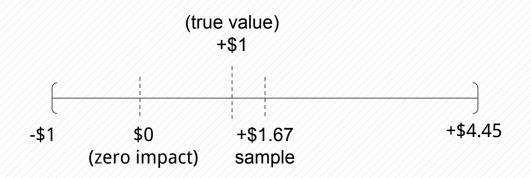
Sample size 1000, p = 0.000***

Effect size

Statistics which help understand the **size** of our impact, not just whether the impact is non-zero.

Examples of effect size statistics

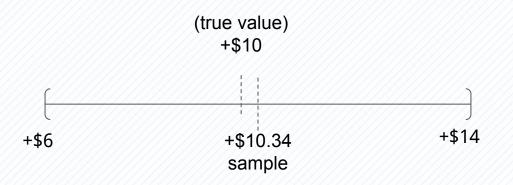
- Difference in means (averages)
- Cohen's d
- Odds ratios
- Eta-squared



Revisiting our small size example Impact of program: +1 USD

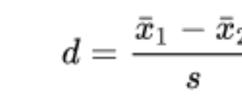
Sample size 50, p = 0.519, [-2.42 - 4.75] Sample size 100, p = 0.236, [-1.11 - 4.45] Sample size 500, p = 0.014, [0.34 - 2.96] Sample size 1000, p = 0.000, [1.12 - 2.95]

Activity Info


Confidence intervals

Sample size 100, *p* = 0.236, [-1.11 - 4.45]

Confidence intervals



Sample size 50, *p* < 0.001, [6.10 - 14.57]

Cohen's d

- *Standardized* mean difference
- Useful for values without easily interpretable units

Activity Info Interpreting Cohen's d Roughly speaking, how much variation is explained

0.5494623 1.3885407

Effect size	d		
Very small	0.01		
Small	0.20		
Medium	0.50		
Large	0.80		
Very large	1.20		
Huge	2.0		

Note on complex samples

svyttest(enroll~income, dclus2)

If your sample uses clusters or stratification, you **<u>cannot</u>** use a simple t-Test. See the R survey package:

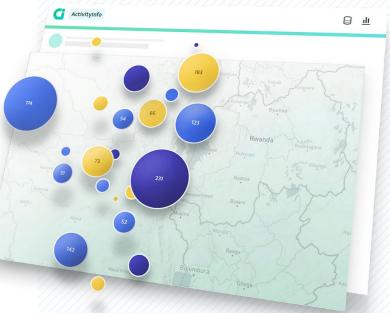
https://cran.r-project.org/web/packages/survey/index.html

design <- svydesign(id=~dnum+snum, data=training)</pre>

Activity Info

Communicating about effect size

Try ActivityInfo!


The most complete database system for M&E available.

Try a template

Demo Webinar:

May 31st, 14:00 CEST

